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i l. Let G be a multi-graph, i.e., a finite graph with no loops.

V(G) and E(G) denote the vertex-set and edpe-set of G, respectively.

For x € V(G), a(x, G) denotes the depree (or valency) of x in G

and m(x, G) denotes the multiplicity of edges at x in G, i.e. the
minimum number m such that x is joined to any other vertex in G

by at most m edges. : q

A graph H 1is called a spanning subgraph of G if V(H) = V(G)

and E(H) € E(G). Iet Xk be any positive integer. Iet

(Lad) gt G = B UH, UeoU B

be a decomposition of G into k spanning subgraphs so that (1)

bbb

H, Hy,...,H, are spanning subgrephs of G, (2) W, HyjeeoH are

pairwise edge-disjoint, and (3) U E(Ha) = E(G). For each
<<k
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x €v(G), let v(x, ¢) denote the number of subgraphs Hy in o -. N
S S e y ‘4
such that d(x, H) > 1. Evidently, ﬁ ) |
Aol pn £l l
(1.2) v(x, o) < min (k, d(x, G)) for all x € V(G). STRE, e ' 1
: | |
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2. Given a multi-graph G and any positive integer k, we ﬁ l |

consider the problem of determining a decomposition @ of G into k
spanning subgraphs such that v(x, ¢) is as large as possible for each

vertex x € V(G). In particular, we have proved the following two theorems. ;




Theorem 2.1: If G is a bipartite pravh, then, for every

positive integer k, there exists a decomposition ©

of G into k spanning subgraphs such that

(2.1) v(x, 0) = min (k, d(x, G)] for all x € V().

Theorem 2.2: If G is a multi-graph, then for every positive

integer Xk, there exists a decomposition ¢ of G into

k spanning subgraphs such that

(2.2) y(x, o) > mnlk =n(x, 6), d(x, 6)) if d(x, G) <k
" min(k, d(x, G) - m(x, G)) if 4(x, G) >k
for all x € V(G).

Moreover, if W € V(G) is such that

WN(x€v(Ee): x-mlx, 6) <d(x, G) < k + n(x, G))

is_independent, then @ can be so chosen that in addition to (2.2),

we have
v(x, 0) = min(k, d(x, G)} for all x € W.
3. The above theorems generalize some well-known theorems in
graph theory.
Iet G be a multi-graph; let H be a spanning subgraph of G.
H is said to be a matching of G if for every vertex x, d(x, H) <1;

H 1is said to be & cover of G if for every vertex x, d(x, H) > 1.




_ of which is a cover of G.

The chromatic index of G, denoted by xl((;), is defined to be the

minimum number k such that there exists a decamposition of G into
kX spanning subgraphs each of which is a matching of G. The cover

index of G, denoted by w.l(G) is the maximum number Xk such that

there exists a decomposition of G into k spanning subgraphs each

Theorems 3.1 and 3.2 below are nbtained from Theorem 2.1 by

d(x, G) and k = ﬁi% V(G) d(x’ G)’

respectively.

Theoren 3.1 [1]: If G 4is a bipartite graph, then,

% (6) = ﬁgév(c) a(x, G).

Theorem 3.2 [2): If G is a bipartite graph, then,

_ min 7
@) = xev(e) a(x, G).
Similarly, Theorems 3.3 and 3.k are seen to be special cases
of Theorem 2.2,

Theorem 3.3 [3,4): If G is & multi-graph, then,

@) £ T v(e) (@6 ©) + mlx, 6)).

Theorem 3.4 (5]: If G is a multi;-graph, then,

@) > TR0y (@ 6) = mlx, 6)).
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Remark: We have also generalized Theorem 2.1 to a theorem for
balanced hypergraphs which contains as special cases some theorems due

to C. Derge [6].
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